
In

A Text Presentation Application for the Macintosh
0

1 Users' Manual

Elizabeth Saul, Mike Pohl, and Susan R'. Goldman

University of California, Santa Bar ra

TechnloM Repor

Deember, 1I

DTIC
L

i~~lS ELECTE I1

The softw re de bed In this report was developed with funding from the Cogni Scienoe

Program, Office of Navil Research, under Contract N00014-85-K-0562, authorization

number NR442016. Reproduction In whole or part is permitted for an purpose of the United

States Gvernment. Approved for pic release; distribution unlimited.

89 1 27 004

Unclassified
SECURIT CLAT$SFCATION OF THIS PAGE...

REPORT DOCUMENTATION PAGE

Ta. REFORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTI.ORITY 3. DISTRIBUTION I AVAILABILITY OF REPORT

Approved for public release; distribution
2b. DECLASSiFICATION I DOWNGRADING SCHEDULE unl i mi ted.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REFORT NUMBER(S)

6. NAME OF PERFORMLNG.OIGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

University or allTornia (If applicable) Co nitive Science Program
Santa Barbara Office of Naval Researc (Code 1.142CS)

6r. ADDRESS (City. State. and ZIPCode) 7b. ADORESS (City, Stare. ana ZIP Code)

Department of Education 800 North Quincy Street
University of California Arlington, VA 22217-5000
Santa Barbara, CA 93106

Ba.'NAME OF FUNDIN
GGISPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IOENTIFiCAT;ON NUMBER

ORGANIZATION (if applicable) N00014-85-K0562

8C. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASC WORK UNIT
ELEMENT NO. NO, NO. ACCESSION NO

11. TITLE (Inciuae Securnty CawficarIon)

Readit! A Text Presentation Application for the MacIntosh Users' Manual

12. PERSONAL AUTHOR(S)

Elizabeth Saul, Mike Pohl, and Susan R. Goldman

13a. TYPE OF REPORT 113b. TIME COVERED . i4..T OF REPORT earMonth, ay)|i S. PAGE COUNT

Technical FROM 1985 TO 1988 |19 D, ecemer, 37
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue On rever if necessary and identify by block number)

FIELD GROUP SUB-GROUP

05 10 Text Comprehension; Computer Presentation of Text

19. ABSTRACT nue on reverse if necessary and identify by block number)

IT READITI is a text presentation application for use on the Macintosh computer. It
presents a pre-specified segment of text in the window and records the amount of time
spent on the window. Progress through the text consists of viewing a sequence of
windows, each displaying one segment of text. Segments may be viewed in a forward
direction or in a backward direction. A complete trace of the readers progress through
the text if kept. From that trace, we can reconstruct the order in which segments were
read and how much time was spent reading each. A series of data treatment
applications perform compute rate and process time measures and prepare data

* tables from which various summary statistics may be computed. In addition to
READIT!, the MacWrite or MSWord word processing applications are necessary. Z)

20. OISTRIBUTION/ AVAILABILITY OF ABSTRACT 21. ABSTPACT SEfURIIY CLASSIFICATION

-JUNCLASSIFIEDAJNUMITED 0 SAME AS RPT. 3 oTIc USERS unlc"aSSiuleo
22a. F RESPOISWILE INDIVIDUAL 221.t6T9W94W Area Code . YBOL "

1. rM Susan Lnipman 1 ZUOF11'B OL

DO FORM 1473, s. MAR 83 APR eoitmon may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.

Table of Contents

A;;stract 1

Summary of READIT' 2

Before you Start 4

1. Edit ing and manipulating documents in MacWrite or MSWord 5

11. The Application BUILDFILE 9

Il1. The Application READIT 15

IV. The Application CONVERT 23

*V. The Application LASTONE 31

VA The Application VIEWDATA 37

Accession For

N, T I S r 1t A&I

DTIC TAi~

A~~~bIityCodes

A-vpl. and/or
)Ist spf 'I11

ABSTRACT

READIT! is a text presentation application for use on the Macintosh computer. i
presents a pre-specified segment of text in the window and records the amount of time
spent on the window. Progress through the text consists of viewing a sequence of
windows, each displaying one segment of text. Segments may be viewed in a forwaro
direction or in a backward direction. A complete trace of the readers progress through
the text if kept. From that trace, we can reconstruct the order in which segments were
read and how much time was spent reading each. A series of data treatment
applications perform compute rate and process time measures and prepare data
tables from which various summary statistics may be computed. In addition to
READIT!, the MacWrite or MSWord word processing applications are necessary.

SUMMARY OF READIT!

READIT! is a series of Macintosh applications designed to present text, record reading
time per window, record the sequence in which windows are viewed, and prepare the
reading time data for subsequent statistical analyses. Our use of the package involved
presenting one sentence per window but other "per window" segments are possible.
Readers can skim forward and backward through the segments much the way they
might when reading normally.

The software was developed for a Macintosh II computer with or without a hard drive,
and with the extended keyboard. The software will work on any Macintosh with 512K
RAM, including Mac SE and Macli. The software is written in MPW Pascal and cannot
be translated to other machine types because the resource code is Mac dedicated.
A program disk and complete listings of the Resource Code and of the Source Code
are available upon request from the third author.

The data collected and manipulated by these programs consist of reading rate,
processing time, and reading sequence for sentences and passages. Ceilings on the
number of passages and segments permissible within a given testfile make research
into smaller units of text, such as words, unfeasible without modifications to the
program. In addition, this package is not intended to collect data on eye movement,
vocabulary comprehension, or perceptual dysfunctions.

The following overview briefly describes the function of each application and where in
the research process each application falls. More complete information regarding the
purpose, constraints, use, and output of the applications is contained in the chapter for
each.

1. Macwrite/Ms Word

The texts selected for subjects to view are typed in one of these word processors. In
order to gather chronometric data on a meaningful unit of text, it is decided ahead of
time how much of each text will be shown on each screen view; the passages are
divided into these "segments" by delimiting them. Once typed, corrected, and
delimited, each passage is saved as a unique "text only" file.

2. Buildfile

The delimited passages created above are prepared for computer use by the Buildfile
application. Specifically, Buildfile breaks each passage down into its delimited
segments, assigning each segment to a unique file which will save chronometric
information about that one segment apart from data for other segments. Buildfile also
"builds" an entire experimental test by chaining together several different passages (in
our experiment, the sentences presented were part of a larger whole text, called a
"passage"), in the order requested by the experimenter. The result of Buildfile is a
unique testfile, to be administered by the computer, which maintains the presentation

order of segments within passages, and of passages within the testfile, as selected,

delimited, and named by the experimenter.

3. Readit

The testfile created in Buildfile is presented to a subject via the program Readit. Readit
displays the testfile segment by segment, passage by passage, to the subject.
Between passages are interactive dialogues to cue the subject when one passage is
finished; these allow him to control when the next passage starts, and provide a
chance for testing or other experimental manipulations between passages. The
subject also controls how long and how many times each segment is viewed, pressing
a "movement key" when he has finished with one segment and is ready to read the
next (or previous) one. In addition to presenting the passages, Readit also stores
information about how much time each segment was on the screen, and what order
the segments were read in. This data is saved in an output folder named by the
experimenter in the form of 3 unique files with the extensions ".trce," ".segs," and
".time." These extensions reflect the reading order of segments, information about
each segment, and the amount of time the segment was on the screen each time it
was displayed, respectively.

4. Convert

The 3 output files located in the output folder from Readit are combined and
manipulated by Convert such that all information from the three files is collapsed in
one file. Chronometric and descriptive data are presented for each segment, in the
order that the segments were read, for each passage in the testfile. The result of
Convert is a unique file, saved into the output folder created by (3) above with the
name "time.new."

5. Macwrite/Ms Word

The results of Convert are opened and edited through the "text-only" option in either of
these word processors. "0.000" times or extremely large ones resulting from subject
mistakes, distractions, etc. are edited out of the timefile in order to clean up the data.
The edited file is saved in the given subject's output folder, with a unique name of the
experimenter's choosing.

6. Lastone

Lastone calculates summary data from the edited timefile of Convert. The results of
Lastone are saved in the output folder in a unique file with a ".conv" extension.

7. Viewdata

BEFORE YOU START

The following manual contains detailed, technical information. Understanding
the technical terms used, and the logic behind the examples, will make the
manual more palatable. Therefore, the following represents a list of commonly
used terms and a short explanation of the examples.

Before the definitions, however, it is crucial that the difference between file and
folder be very clear. Consistent with standard Macintosh lingo, files are
always subordinate to folders. Each time there is "output" from a specific
application, it is saved as an output file with an extension to tag its origin (see
explanation of "extension" below). Every output file is saved in an overarching
"output" folder; hence, when all the applications have been run, a given
subject's "output" folder contains 5 or 6 different "output" files, each with its
own origin tag, and each containing the subject's data in a different state of
summarization and analysis.

TERMS

Delimiter - a keyboard character which has been chosen to consistently mark
the division between two segments in a text. It is simply inserted between the
segments of interest, and is later read by the computer as a boundary marker.

Extension - the unique period + 3-letter extension added by each application
to all files it creates, designed to facilitate identification of output data files. For
example, Convert adds ".new" to the file it creates.

Segment - a text subset of any length, created using any standard word
processor, and defined by delimiters. Is usually the unit of measurement.

Testfile - the result of Buildfille and the input for Readit. Contains the input
presented to the subject, as s/he will see it.

Text - the group of any characters, including spaces, tabs, numbers, symbols,
and letters, which has been created and saved in a word processing program
such as Macwrite or Microsoft Word.

ABOUT THE EXAMPLES

For each step of every application, there are two examples in the manual. One
example is written, and the other is a figure. The two examples deliberately reflect
different file names to give the reader a wider taste of possible menus, file names, etc.
The written example corresponds to the file-naming conventions we used in our
experiments; the pictures usually don't.

I. EDITING AND MANIPULATING DOCUMENTS IN MACWRITE or MS
WORD

The purposes for which these two word processors were created are obvious.
However, in the following discussion, we will look at some of their lesser-known
capacities, with specific interest in the ability to edit and create "text-only" documents.
Although slightly different in screen format, Macwrite and MS Word can be used
interchangeably.

CONSTRAINTS

(1) Macwrite is by nature slower in every task than MS Word. If speed is of high
priority, then we recommend using MS Word.

(2) MS Word has a default pitch which causes the data files resulting from Convert
and Lastone to "wrap". Each time one of these files is opened in MS Word, the
entire text must be shifted to a lower pitch. This problem does not exist in Macwrite,
which we recommend using if speed is NOT of high priority.

(3) Only files containing text or data may be opened through a word processor.
Programming code, etc. cannot be opened in this manner.

(4) You must be somewhat familiar with the basic functioning of these two word
processors; it will be assumed that such things as saving, saving as, closing, quitting,
and shade-to-erase operations are familiar to you.

USING MACWRITE or MS WORD

For convenience, we will divide this section into the following two parts: (1) Saving
and opening "text-only" files, and (2) Creating and Delimiting the textfiles used to run
Buildfile.

Savin and Opening "Text-Only" Files

SAVING: After editing a document in either Macwrite or MS Word, it must be saved.
As the process is simpler in Macwrite, we will use it for our example. The process is
analogous in MS Word.

Since Macwrite opens all new and all text-only files as "untitled" (see next section),
there is no difference between saving your file using the "save" or the "save-as"
options. Whichever you choose, you will encounter a dialogue (figure 1) which asks
you to provide a name for the as-yet "untitled" file. As you can see, at the bottom of the
dialogue are two little circles next to two choices.

d; IM E dit So(.< "h F'o r m at F'o)nt t(i?

,' subl.OUTPUT
.. ElI(kfJl) 0t subl Iirriene...

THE FOLLOW I ri)TI~
TIMES ARE IN D: 4ulf.I.Ml .Nl fl)

£w I , iI ~e j.

*W => Numb Saue Current Document As CM ED app...

L => Numb Isub1.Time.New-EDITEE
tS => secs. Eject7
tW => secs.
tL => secs. P Saue] Cancel:] Driue
tSC => Cumul O Entire Document . Text Only
tWC => Cumu h

CUME => Cumulative Time for All Segments.

-- Figure 1 -

The default choice, which has a filled-in circle, is for regular word-processing
documents like this one, and reads "entire document". The other choice, which is the
one of interest here, reads "text only".

Saving a document as "entire document" means saving all print commands (like pitch,
font, style, etc.) and all "page format" commands (such as tabs, indents, rulers, hard
returns, etc.). In contrast, saving a document as "text only" means saving only the
characters on the screen as they appear (like "gg gg h qp" and the spaces between
them), without any other information. This "text only" option corresponds to the "non-
document" mode in other word processors, like WordStar.

Before giving your document a name and clicking on the "save" key, you should click
on the circle next to "text only". The "text-only" circle will become filled in, and the
"entire document" circle will become empty. Thus we see that the two are polar
opposites; a file can only be one type or the other. NOW name your document
SOMETHING DIFFERENT THAN IT WAS NAMED BEFORE and click on "save". The
Mac's saving process is the same as for any other file from here on out. If you try to
name the document as it was named before, you will get an error message.

OPENING: To open a text-only file in Macwrite, you cannot simply double-click on
the text-only file's icon. If you do, you will get the error message which says roughly,
"This application is missing and/or in use, and cannot be opened".

Therefore, you must open the file by FIRST opening Macwrite. Simply double click
on the Macwrite icon. Then, once the empty text screen is showing, CLOSE THE
SCREEN. Next, drag down on "file" and "open". You see the familiar "open" choices
for Macwrite. Select the file of interest, and open it. You immediately are presented
with a dialogue (figure 2) offering you a choice between "paragraphs" and "line
breaks". SELECT PARAGRAPHS. Then you are asked to approve or cancel the file
being opened as "untitled". Click on "OK" and your data will appear on the screen.

When you close your text-only file, the same dialogue (figure 2) with the "paragraph"
vs. "line-break" choice will appear. Again, SELECT PARAGRAPHS.

Should a Carriage Return signify a new paragraph or a line

break?

Paragraphs Line Breaks CancelI

- Figure 2 -

Creating and Delimitina textflles

Creation of textfiles is simple. Using either Macwrite or MS Word, type the passage,
characters, or patterns of interest into the file just as you would any other text. Be
advised that double-spacing, boldface, tabs, paragraph indentations, etc. are all
superfluous, and might as well not be done; therefore, single-spaced typing is
simplest. The only way to achieve any centering, etc. is to space the character(s)
involved over by.jhand Make sure that you save your finished textfile as "text only"
(see previous section).

Delimiting textfiles is also simple. First, select some keyboard character which you are
100% certain DOES NOT appear in any of your texts, and designate it as your
segment delimiter, i.e. marker. Our delimiter was the black dot created by pressing
"option" and the regular keyboard's "8" key at the same time, and it looks like this: .

However, you may choose whatever character suits your fancy. Second, decide
where you want the divisions between segments to lie. For us, the division lay at the
end of each sentence. Third, put a delimiter between each segment. Using our
example, the sentences would look like this.-The black dot would tell Buildfile to
make a new segment.

You do NO' need a delimiter before the first segment of a passage, nor after the last
segment. Also, if a space appears after the delimiter, then there will be a space before
the fire word of the segment in which it appeared, making it have a small indent when
it appears on the screen.

You must keep each individual passage in a separately named textfile

OUTPUT

The result of creating or saving some file as "text-only" will be an icon resembling the
typical Macwrite icon, except that instead of what appear to be tiny letters on a piece
of paper, the "text-only" icon will have just straight lines on a piece of paper.

Any file which has been saved as text-only must be opened through Viewdata or
Macwrite/MS Word as mentioned above.

II. THE APPLICATION BUILDFILE

PURPOQSE:

Buildfile was designed to create input for Readit. Buildfile divides each individual
text passage into the number of "segments" that the experimenter desires. In addition.
Buildflle concatenates several "segmented" passages into an entire test, which is
saved on disk and referred to as an "input folder" or "testfile".

First, Buildflle operates on specific delimited text (see Macwrite manual for more
information on delimiting), dividing it into the number of segments marked by
delimiters. During this "segmentation" process, Buildfile creates a list of all the
segments, and their serial order, so that later calculations on reading time and number
of words per segment can be made. Buildfile can be used to create segments with
lengths ranging from one letter up to screen-length paragraphs, and need not be used
exclusively for text; numbers or keyboard symbols are also permissible input sources
and segments.

Second, Buildfile concatenates up to 35 different, individually segmented passages
into a complete test. The assumption is that each passage will represent a different
type of reading treatment, and that at least 3 passages will be presented to each
subject in order to have a balanced design. If your experiment examines, say,
individual letter recognition, then the passage distinction may lose significance. In
addition, Buildflle creates a list of all the passages, and their serial order of
presentation, such that Readit can effortlessly present the correct passages in the
desired order to the subject. Buildfile thus maintains two separate levels of design:
that of the segment and that of the passage.

CONSTRAINTS:

(1) The texts on which Buildflle operates must have been saved as "text only" files.
See section on Macwrite for more information. "Text only" files are not capable of
retaining fonts, pitches, italics, etc.; therefore, issues dealing with unusual letter size,
shape, etc. are inappropriate for this application.

(2) The texts on which Buildflle operates must contain some sort of delimiters
between the desired segments. Again, see the Macwrite chapter for more
information.

(3) Any segment being submitted to Buildflle must have no more than 684
characters (including blanks) - the limit of the Readit screen. Any additional
requirements will necessitate program adjustments.

(4) Any given text on which Buildfile operates may be divided into NO MORE than
30 segments. If more segments are needed, then program alterations will be required.

]0

(5) Although Buildfile is capable of creating passages indefinitely, later applications
have limits; therefore, NO MORE than 35 passages may be concatenated with
Buildflle. Again, additional passages will require program alterations.

(6) When naming passages in both Buildfile and Macwrite, the experimenter muzz
take care to enter NO SPACES between the number and letter characters which
comprise a legal passage name. Buildfile will not suffer for these errors, but later
programs will bomb. For example, "Passagel" and "firstone" are legal; "Passage 1"
and "first one" are not.

(7) The first passage name entered when Buildflle is begun will always be assumed
by Buildfile to be a sample item, used for training the subject before the real task
begins. The time data resulting from it will not appear in the final output from Readit.
Any additional requirements will necessitate program alterations.

(8) Buildfile will NOT automatically counterbalance your design. YOU are
responsible for knowing what order you wish your passages to appear in, whether the
segments or passages are of comparable length, difficulty, etc., and how many
passages you have put into each testfile.

RUNNING BUILDFILE

Before running the application, you must have done four things: (1) Inserted the disk
containing the delimited passages on it; (2) Inserted the disk containing Buildfile on
it; (3) Inserted the disk on which you want the testfiles to be stored; and (4) Decided
upon a specified research design, including a naming convention. Requirements (1) -
(3) can be located on the same disk, if desired; however, if more than one replication
of your entire design will be run, it will be easier to make (3) a disk separate from (1)
and (2).

To begin, double click on the icon for Buildfille. The following dialogue box (Figure 3)
appears, asking you to name the disk onto which you want to save your data ((3) from
above). You may elect to use a disk in the hard, internal, or external drives. You must
know the name of the disk and type it in exactly as it appears on the icon. When you
have typed it in correctly, then click on "OK". If you decide to abort Buildfile at this
point, click on "cancel".

Please enter the name of the Disk
.qou want to save .qour testfile on to.

Data Disk .,[acl

-Figure 3 -

The next dialogue (Figure 4) asks you to assign a name to the input folder into which
Buildfile will momentarily save all the passages and segments you create. Type in
the name, with no spaces, and click on "OK" (or hit "return) when you have the name
as you desire it.

SPECIAL NOTE: Buildfile automatically adds to every input folder name a ".input"
extension, which makes it easier to identify input files; thus, naming your input file
"Sub3" will result in a file titled "Sub31input". Do Not type the ".input" extension in your
file's name - if you do, you will wind up with file names like "sub3.input.input".

Please enter a name for the testfile
.qou are about to create.

- Figure 4 -

Once you have finished naming your testfile, a third dialogue (Figure 5) appears,
asking for verification of the name and permitting error modification. If the name is
incorrect, clicking on "NO" returns you to the second dialogue (Figure 4) for another
naming attempt. If it is correct, clicking on "YES" (or hitting return) will move you on to
the next stage of the program.

The
file

to contain

data
is

sube"?

--Figure 5 -

12

Now Buildfile needs to know how to distinguish the segments from each other, so a
dialogue box (Figure 6) asks you to type in the DELIMITER you used to differentiate
between segments in your text file (see Macwrite manual for more information).
Once you have typed it in, click on "OK".

Enter Delimiter

Please Enter the delimeter you used
to separate the sentences in your
text.

- Figure 6 -

A fifth dialogue appears (Figure 7), requesting that you identify and open the passage
you wish to use for your "sample". BE SURE YOU CLICK ON THE SAMPLE AND NOT
ON PASSAGE #1. Once you have started the building process, there is no way to
reorder the passages you have selected.

Please open the passage you want to use as the
"sample" passage. Thank You.

D a1l enLISTI H

D bl,2
o c2,3E.j,
O d5,4

o f6,1
Sg4,4 aOpen

O 13,3 (Cancel

- Figure7 -

Next, a message appears, requesting you to be patient while Buildfile divides up the
text into its allotted segments, etc. The message can last anywhere from 10 seconds
to 2 minutes, depending upon the length and number of segments in your text.

The final dialogue (Figure 8) offers the choice of either ending Buildfile or recursively
returning to dialogue #5, which will ask you to select the next text you want to use for
passage #1, #2, etc. as appropriate. If you want to add another passage to your
testfile, then click on "continue". If you have finished building the testfile, then click or'
"end". You will be returned to the desktop.

I i I I I I iIi i

7? AlRE YOU FINISHED ?? KNEW=='==

Click on 'CONTINUE' if
you want to create

more passages. Click
on 'END' if you are
finished.

-- Figure 8 -

If you want to build more testfiles, then you must reinvoke Buildfile and go through
the processes named above, creating another unique output folder.

OUTPUT

The results of Buildfile's operations will be saved in the folder, and on the disk, which
you specified at the beginning of the application - that is, you will see a folder with the
name you gave it and a ".input" extension. So for example, my testfile will be saved in
a folder called "Sub3.input". Inside this folder will be a unique file for EACH
SEGMENT of EACH PASSAGE you used to generate your testfile, and one additional
file with the same name as the file folder; for example, a file called simply "sub3".

It is strongly recommended that all of Buildflle's results be checked before being run
on Readit. To check the contents of the testfile you just created, click on the folder
icon (for example, wsub3.input"); move to the one entry in the file which is named
identically to the file's name (for example, "sub3"); and open it. The contents of this
file provide a chronological listing of the passages you entered, and of the segments
within them. If they are not in proper order, you should rebuild your testfile. If there are
segments missing, you should return to your text files and be certain that all delimiters
were properly entered, and that you used the same delimiter in every text. Then you
should re-build the file and check it again.

If you now want to run a subject, then you should use the application Readit.

i11. THE APPLICATION READIT

Readit presents to subjects the contents of a testfile created by Buildfile. These
contents are presented one segment at a time, passage by passage, on a computer
screen. Readit records both processing time per segment, and the reading order of
segments, into an output file.

Subjects control the speed of segment presentation by pressing a key to finish displa:
of the current segment and begin display of the next segment. Processing time is
defined as the interval between a given segment appearing on the screen, and the
press of a movement-key; it is automatically scored by the computer to within 1/60 of i
second, and is recorded by Readit in the output folder, in a file with a ".time"
extension.

Subjects control the order of segment presentation; once they have read at least two
segments in a given passage, they can either call the next segment OR recall the
previous segment to the screen. Therefore, when they have finally finished "reading" a
passage to their satisfaction, the subjects may have many reversals in their reading
order. For example: they may have read segments 1,2,3,4,5,6; then returned to 5;
then to 4; then read 5,6,7; then returned to 6; then read 7,8,9; then returned to 8;
then to 7; and so on. Readit keeps track of the sequence of segments as they are
read by the subject, and records the order into the output folder, in a file with a ".trce"
extension.

The subjects may also have read a given segment any number of times. From the
example above, segments 4 and 8 were read twice each; segments 5,6, and 7 were
read three times each. Readit keeps track of the number of times each segment was
read per passage, and stores that information into the output folder, in a file with a
.segsn extension.

Subjects cannot return to segments from a previous passage once they have finished
with that passage and begun a new one; thus, the integrity of given passage
treatments is maintained.

CONSTRAINTS

(1) The testfile used as input for Readit must have been created by Buildfile and
must have NO SPACES in either its name or in the names of passages within it.

(2) The keyboard used when running Readit should be the modern, expanded
keyboard with a numeric keypad. If the older keyboards are all that are available,
program alterations will be required.

(3) Although Readit results in time data to three decimal places, time measurements
are really only accurate to 1/60th of a second (.016), which corresponds to one

Macintosh "tick". The 3rd decimal place is automatically rounded. Time which elapses
between passages is not recorded.

(4) While reading, subjects are not able to scroll forward by holding down the
"forward" key; that key must be pressed once for each segment. However, subjects
may scroll backward by holding down the "previous" key.

(5) Subjects may re-read any segment which has been read at least once. They may
not "finish" reading a passage, i.e. stop the timer, until each segment has been read atleast once. If they accidentally "finish" before having re-read specific segments to their

satisfaction, there are provisions for reentering the passage. However, if they
accidentally "begin" a passage before they are truly ready to read, there is no way to
erase the "false start."

RUNNING READIT

Before beginning Readit, you must have done the following things:' (1) Inserted the
disk containing the Readit application; (2) Inserted the disk containing the input
folder, or testfile; (3) Inserted the disk onto which you wish to save your subject's
output file; (4) Made certain that the keys corresponding to "next," "previous," and
"finished" are clearly labeled for the subject's reference; and (5) Explained to the
subject how to use the keys - the "sample" passage is usually when this is done, but it
is important even before starting Readit that the subject understand the extent to
which s/he has control over the segment viewing process.

The three movement keys are the following:

"Previous" is the "Apple" (Control) key
"Next" is the "0" key on the numeric keypad
"Finished" is the "Enter" key on the numeric keypad.

Refer the Figure 9 for location on the keyboard. The shaded keys are those of interest.

1234567 8 9 0 (backsp) 789
QAW ERTYUI P [] re 4 5 6

ZXCVBN M ,. /(shift) 2 3 F1Nii
PREP I space bar I I C *'!t

LOCATION OF PREY, NEXT, AND FINISH KEYS
ON THE TYPEWRITER KEYBOARD

-- Figure 9 --

In case of confusion, the bottom of every screen explains what the movement keys are
and what they do, and is updated with each new screen. For example, the option to
"finish" only appears when the last segment of the passage is displayed on the screen

for the first time. "Finish" remains as an option from then until the subject has finisnec
reading that particular passage.

If the subject attempts to press a key which is either illegal (for example, the "return"
key) or which is not valid at that point (for example, the "finished" key before having
read every segment at least once), the machine "beeps" to alert subject and
experimenter to the error.

To begin Readit, double click on the Readit icon. The following dialogue (Figure 1 0.
appears, requesting that you specify which disk you want the output data to be saved
on. Type in the disk name exactly as it appears on the disk's icon, and click on "OK".
You may elect to save your data on a disk in the hard, internal, or external drives; it
may be saved on the same disk as that containing the input files, or on its own unique
disk. If you started Readit accidentally, click on "cancel" to return to the desktop.

-Figure 10-

The next dialogue (Figure 11) is really a 2-part dialogue, and requires a 2-part action.

First, follow the instructions in the first step of the dialogue (Figure 11) and open theinput file you created with Bulldfee. The dialogue header will stay the same, but the
listing will change from all folders on that disk o the contents of the folder you have

selected.

HO , ' I I I I

I I ----i- ------- - 18

First open the input file used for this test. Then
open the file with the same name as this inputfile
(without the .INPUT extension)

[ED applications I

M BuildFile ED applicati...
C3 Convert
C' LastOne EjectE
i3 Readit Drive

C3 sub .OUTPUT -

open7

ancel

-- Figure 11 -

Second, follow the instructions in the second part of the dialogue, and open the file
with the same name as your input folder (Figure 12). For example, let us assume tha
your input folder is called "Sub3.lnput". You have opened this folder and now you
scroll through its contents until you come across the file called simply "Sub3" (Figure
12). Open this file.

-- - - - - -- - -- - - -- - -

First open the input file used for this test. Then
open the file with the same name as this inputfile
(without the .INPUT extension)

egsub 1.iNeUT I

CM ED applicati...
D test.SEG.l
0 test.SEG.2 Eject7
I'n test.SEG.3 D riue
' test.SEG.4

Open_

Cancel

-- Figure 12 -

(Opening the input folder tells Readit exactly which folder the input lies in; and more
specifically, which file the list of order for the input passages is located in.)

Now Readit asks for an output file name (Figure 13). (This "file" will actually become a
folder, so we will refer to it as a folder in this text.) For simplicity's sake, we
recommend titling it with the same root name that your input folder had. So for
example, if the input folder were named "sub3" then the output folder name should be
"sub3". Readit will generate a ".output" extension for the output folder; therefore the
output folder will be titled "sub3.output".

IMPORTANT NOTE: similar to Buildflle, the user should NOT add the ".output"
extension - Readit will do this for you. Simply type in the desired root name, for
example "Sub3". Once you have entered the name, click on "OK" to continue forward
in the program.

20

-- Figure 13--

The next dialogue (Figure 14) offers the expermenter a chance to modify the output

folder name in case of typos or other errors. Click on "yes" if the folder name is correct.click on "no" if it is incorrect, and Readit will return you to the dialogue in Figure 13 for
another chance.

-- Figure 14--

Readit has only 2 more dialogues, and they are for the subject's use only; therefore,
it is imperative that both experimenter and subject be completely familiar with these

dialogues.
The first type of dialogue precedes each new passage (Figures 15 and 16), and is in a
sense the start/stop button on the Macintosh's internal stopwatch. The internal timerdoes not begin until the "OK" button is clicked; it is activated once the "OK" button is
clicked on and the first segment is on the screen. It is extremely important that the
subject does not click on OK until s/he is actually ready to begin reading the passage.

* Each time the "Are you ready?" dialogue (Figures 15 and 16) comes up on the screen,
it mentions the sequential number of the passage to be displayed; the only exception
is that the "sample" passage has no number. Thus, in Figure 15 the sample passagewill begin once "OK" is clicked; in Figure 16, the first passage will be presented.

.......... . .is i mrtv tha bot exprim nte andi subjec be co petl famlia wtl ths

~?? ARE YOU READY ??

Please click "OKN when you arer eaUeady for the sample passage.

- Figure 15 -

?? ARE YOU READY ?? 0

Please
click "OK when

you are

readyfrpssglI

- Figure 16 --

The second type of dialogue (Figure 17) follows each passage and is the "stop" button
of the internal stopwatch. It occurs after each passage has been read and the subject
has pressed the "finished" key to exit the passage. This dialogue gives the subject a
choice: either quit this passage or reenter it. Clicking on the "no" key puts the last
segment of the passage just "finished" back onto the screen, with normal scrolling
options open, and the timer continuing to be active. Clicking on the "yes" key finishes
the session with that passage and STOPS the timer. The given passage can never be
returned to by any single subject once the "yes" key has been clicked on.

?? FIRE YOU FINISHED ??

You have reached the end of this Passage.
Are you sure you have finished reading ?

-- Figure 17--

It is very important that the subject respond to this dialogue because the program
cannot write the time data into its location until "yes" has been clicked on.

Finally, once the last passage has been read and "yes" has been clicked on, there is a
small notice which appears to inform you that the machine is writing all the time, trace,
and segment information into the appropriate output file. Once the writing process is
completed, the desktop appears and any other application may be selected.

OUTPUT

The output from running Readit will be saved into the output folder and on the disk
you specified at the beginning of the test session. It is highly recommended that you
double-check the contents of the output folder generated from each session of Readit
in order to be certain that the program worked properly.

Inside the output folder should be 3 files, each with your original root name and a
unique extension. For the sake of simplicity, we will continue the example from above
Therefore, the three files in our output folder should be: "sub3.time", "sub3.segs", and
"sub3.trce". Remember, the ".time" file contains the record of each segment's reading
time; the ".segs" file contains information about each segment; and the ".trce" files
provide additional information about segment reading order and the number of letters,
numbers, words, etc. in each segment.

If these three files are missing, check other disks, other folders with similar names that
you could have accidentally typed, etc.

These three small files will be merged when you run them through the Convert
application; therefore, never throw away the contents of your output file just to make
room on the disk.

Although it won't be very useful to you at this point, the data in these three files can be
printed. Simply use Viewdata to print (see manual for Viewdata).

IV. THE APPLICATION CONVERT

PURPOSE

Convert unifies the time, reading order, and segment data collected by the Readit
application and performs additional calculations upon that data. These calculations
will be discussed in detail in the "output" section of this manual.

CONSTRAINTS

(1) All three of the subfiles produced by Readit must be in the output folder for a
given subject, and must have data in them.

(2) Convert will automatically save its results by placing them into the output folder
containing the unconverted results from Readit. We recommend keeping all data
pertaining to the same subject together in one output folder. Therefore, you must be
certain that the disk containing the output folder of interest has enough space on it for
the results of Convert (roughly 5-50k).

RUNNING CONVERT

Before starting, you must have done the following: (1) Inserted the disk containing the
input folder(s) used for running Readit; (2) Inserted the disk containing the output
folder(s) resulting from running Readit; and (3) ascertained that there is enough
space on the disk containing the output file for you to add about 5k of "converted"
timefiles.

To start Convert, double click on its icon. The first dialogue to appear (Figure 18) is
really a two-part dialogue requiring a two-part action. It asks for the folder and file
name of the data to be considered.

First, select and open the folder containing data you wish to convert. So, continuing
the example we used in the BuIldfile and Readit manuals, I would select the folder
named "sub3.output".

Second, once within the output folder, select the file with the ".time" extension. To
continue my example, I would select "sub3.time" and open it.

2 -

EPlease open the output file you wish to convert.

1 subx.OUTPUT

I r testl.SEGS
:HO

esHD
I testl.TRCE [l e

Drive

[Open)]
, [cancel 7

-- Figure 18 -

The second dialogue to appear (Figure 19) is also a two-part dialogue requiring two
actions. It asks for the folder and file name of the input from which this data was
generated, so that it can match, segment-for-segment, character-for-character, the data
to the input.

First, select the input folder you used to get the data from Readit. So, continuing my
example, I would go to the disk containing "sub3.input" and open that.

Second, select (from the contents of the input folder) the file with the same root name
as the input file, i.e. "sub3", and open it.

Please open the file that was used as input for
this output. Please choose the file with the same
name as this input file(i.e. "subl"

l subH.INPUT
o hiO3.SEG.2 (ED applicati...
D h103.SEG.3
o hl 0,3.SEG.4 Eject]

o hlO3.SEG.5 Drive
D hlO,3.SEG.6
o hiO3.SEG.7
o hlO3.SEG.8
* , GCancel

- Figure 19-

Now Convert will perform calculations and combinations on your data, ard the
screen will be blank. The time necessary to Convert data ranges from 1 second to 3
minutes, depending upon the number of segments, passages, etc. in your testfile, and
the number of times they were viewed by the subject.

The final Convert dialogue (Figure 20) will appear at the bottom of an otherwise
blank screen and will inform you that "the conversion was a success!" (If it wasn't a
success, see below.) It will also tell you what the converted file's name is. Again,
Convert has been written to automatically add a ".new" extension to the data it
converts. Therefore, if you were to submit "sub3.time" to Convert, the resulting new
file would be named "sub3.time.new".

This last dialogue (Figure 20) also asks if you would like to perform another
conversion on a separate file. If so, type in "y" and hit return; you will be returned to
Convert's dialogue #1. If you do not wish to perform another conversion, then type in
"n" and hit return; you will get a message which says "normal program termination. Hit
enter to return to shell". This is computerese for "hit return to get back to the desktop".

26

[CONVERSION OF testITIME WAS A SUCCESS!
he new file is testI.TIME.NEW k

WOULD YOU LIKE TO CONTINUE (Wn)?

-Figure 20 --

If you receive an error message or a bomb, you should check the data in your output
folder using Viewdata (see manual). You might also check for a disk error in either
the input or the output folders. Finally, you may have inadvertantly exceeded the 35
passage limit stated in the beginning of Buildfile's manual; Convert will not process
more than 35 passages.

OUTPUT

Table 1 presents a sample of actual data resulting from Convert. The top section
defines the headers used for the data; the bottom section presents data from the first
passage read by the subject. (For the sake of brevity, we did not include data from all
8 passages presented to our subject; however, the 7 remaining passages would all
look similar to the one shown here.)

In this example, the subject's number (7) was the basis for the output folder name:
*sub7.output". The first passage that subject 7 read was named "14,1" and there were
19 segments in this passage (we only show 8 of them here). As noted before,1
segment = 1 sentence.

THE FOLLOWING OUTPUT IS FOR SUBJECT "sub7."
TIMES ARE IN VIEWING ORDER...

#W => Number of Words.
#L=> Number of Letters/Numbers.
tS => secs. Per Segment.
tW => secs. Per Segment Per Word.
tL => secs. Per Segment Per Letter/Number.
tSC -> Cumulative secs. Per Segment.
tWC ,> Cumulative secs. Per Segment Per Word.
tLC => Cumulative secs. Per Segment Per Letter/Number.
CUME => Cumulative Time for All Segments.

SEGMENT #W #L tS tW tL tSC tWC tLC CUME
14,1.SEG.1 24 132 22.900 0.954 0.173 22.900 0.954 0.173 22.900
14,1.SEG.2 13 66 5.267 0.405 0.080 5.267 0.405 0.080 28.167
14,1.SEG.3 18 93 31.483 1.749 0.339 31.483" 1.749 0.339 59.650
14,1.SEG.4 9 53 6.183 0.687 0.117 6.183 0.687 0.117 65.833
14,1.SEG.5 10 60 0.950 0.095 0.016 0.950 0.095 0.016 66.783
14,1.SEG.4 9 53 0.250 0.028 0.005 6.433 0.715 0.121 67.033
14,1.SEG.3 18 93 5.983 0.332 0.064 37.467 2.081 0.403 73.017
14,1.SEG.4 9 53 6.133 0.681 0.116 12.567 1.396 0.237 79.150
14,1.SEG.5 10 60 9.483 0.948 0.158 10.433 1.043 0.174 88.633
14,1.SEG.6 14 73 8.467 0.605 0.116 8.467 0.605 0.116 97.100
14,1.SEG.5 10 60 17.233 1.723 0.287 27.667 2.767 0.461 114.333
14,1.SEG.6 14 73 10.450 0.746 0.143 18.917 1.351 0.259 124.783
14,1.SEG.7 8 64 10.100 1.263 0.158 10.100 1.263 0.158 134.883
14,1.SEG.8 5 33 2.467 0.493 0.075 2.467 0.493 0.075 137.350

-Table 1 -

ABBREVIATIONS IN TABLE 1

A LETTER/NUMBER is defined as each character (excluding spaces) in a given
segment. Therefore "a" is 1 letter/number; so are "-" and "%". "19" is 2
letters/numbers.

A WORD is defined as a cluster of LETTERS; WORDS are separated by
spaces. Therefore "sprig" is 1 word; "sp rig" is two words.

A SEGMENT is defined as the letters and/or words which fall between 2

delimiters in the Macwrite textfiles. Therefore, assuming the black
ball is a delimiter, both "-The boy-" and "- 2 + 2 = *" are SEGMENTS. As
we have seen in the Readit and Buildfile manuals, 1 SEGMENT at a time is
presented on the screen, and the subject determines when the next segment
will appear.

In the header for the data in table 1, the first item is the passage and segment
identifier; items 2-4 are relatively self-explanatory; and items 5-6 and 7-10 represent
measures derived from the information contained in items 2-4. Let us take a closer
look at these items, using the data in the last row of the printout for our example.

All times are in seconds.

"Segment" identifies which passage and segment the data refers to, i.e. "14,1 .seg.8"
"#W" identifies how many words are in the given segment, i.e. "5".
"VL" identifies how many letters/numbers are in the given segment, i.e. "33".
"tS" records how much time the subject spent viewing the given segment on this
particular view, i.e. "2.467".

"tW" uses the information in "tS" and "#W" above to calculate reading time per word
within each individual segment, i.e. "0.493".

"tL" uses the information in "tS" and "#L" above to calculate reading time per letter
within each individual segment, i.e. "0.075".

Items 7-10:e

"tSC" uses the information in "tS" above to calculate the cumulative reading time for
an individual segment, i.e. "2.467".

"tWC' uses the information in "tW" above to calculate the cumulative reading time per
word for an individual segment, i.e. "0.493".

"tLC" uses the information in "tL" above to calculate the cumulative reading time per
word for an individual segment, i.e. "0.075".

"CUME" simply adds together all the times in the "tS' column to provide a reading
time total for the passage as a whole, i.e. "137.350".

It should be noted that the information in items 7-9 is calculated for each segment as it
was read. Thus, it gives play-by-play information about reading rate for each segment.

SPECIAL NOTE: Depending on the size of segments and the measures of interest in
your experiment, you may wish to set parameters for psychologically reasonable
reading time, and edit out of the data file any times (i.e., individual lines of data) which
fall below the parameter. Our criterion was .7 sec; it was felt that any time less than
this was not spent processing the segment on the screen, but rather resulted from key-
pressing time during an attempt to skip over the segment.

Naturally, if you edit out several reading times per passage of, say, .5 to .6 secs, the
columns containing information about "cumulative reading time to date" and "total
reading time for the passage" will no longer be completely correct - they will still refleci
the initial, unedited data. This discrepancy will be remedied by using the application
Lastone. See that manual for more detailed information.

Reading Strategy Information In Table 1

The data resulting from Convert not only contain time information. Inherent in its
structure is information about when and to which segments a given subject returned tc
re-read. This information is contained in the sequential order of the segments viewed,
listed and read from top to bottom of the timefile.

Looking at the data in Table 1, for example, we see that subject 7 read the first 5
segments in order. Then s/he began to "read backwards", by returning first to segmen:
4, and then to segment 3. At this point, the subject recommenced "forward" reading by
reading segments 4,5,and 6. Again, however, the subject read backwards by going to
segment 5. The remaining data shows forward reading from segments 6 to 8.

As mentioned in the section preceding this one, we might wish to edit out the segment
information associated with times less than, say, 1.5 secs. If we were to do so, the data
from table 1 would have the following boldfaced lines edited out of it (Table 2):

SEGMENT #W #L tS tW tL tSC tWC tLC CUME
14,1.SEG.1 24 132 22.900 0.954 0.173 22.900 0.954 0.173 22.900
14,1.SEG.2 13 66 5.267 0.405 0.080 5.267 0.405 0.080 28.167
14,1.SEG.3 18 93 31.483 1.749 0.339 31.483 1.749 0.339 59.650
14,1.SEG.4 9 53 6.183 0.687 0.117 6.183 0.687 0.117 65.833
14,1.SEG.5 10 60 0.950 0.095 0.016 0.950 0.095 0.016 66.783
14,1.SEG.4 9 53 0.250 0.028 0.005 6.433 0.715 0.121 67.033
14,1.SEG.3 18 93 5.983 0.332 0.064 37.467 2.081 0.403 73.017
14,1.SEG.4 9 53 6.133 0.681 0.116 12.567 1.396 0.237 79.150
14,1.SEG.510 60 9.483 0.948 0.158 10.433 1.043 0.174 88.633
14,1.SEG.6 14 73 8.467 0.605 0.116 8.467 0.605 0.116 97.100
14,1.SEG.5 10 60 17.233 1.723 0.287 27.667 2.767 0.461 114.333
14,1.SEG.6 14 73 10.450 0.746 0.143 18.917 1.351 0.259 124.783
14,1.SEG.7 8 64 10.100 1.263 0.158 10.100 1.263 0.158 134.883
14,1.SEG.8 5 33 2.467 0.493 0.075 2.467 0.493 0.075 137.350

- Table 2 -

Note that if these 2 data lines are edited out of the timefile, the number of times
segments 5 and 4 were read will decrease by 1 each. This change will NOT be
reflected in the converted timefile; as mentioned previously, it will be taken into
account when the application Lastone is run on the edited version of this timefile.

30

It is possible that subjects will have viewed many sequential segments at times lower
than your criterion. When you edit these times out, you will have a large gap in the
segment numbers. For example, the subject may read forward through segments 1-
15; then backward through 14, 13, and 12; and then (after a gap resulting from your
editing) through 3,2, and 1. This "gao," and more specifically, the sentences read c,
either end of it, can provide information about segments that were actually processed
(ostensibly important to the subject in some way) versus those which were skimmed
over (ostensibly unimportant to the subject).

Taken together, the data contained in the 10 columns of, and the order of the rows
crossing those columns in, the Convert printout represents a large amount of
information about the reading rate, strategy, etc. used by subjects for each individual
passage, and across passages.

It is highly recommended that this data be either viewed (using Viewdata) or edited
(through one of the word-processing packages - see the manual on MacwrIte/MS
Word) in order to be certain that all of the passages which were read appear, in
proper order, in the ".time.new" file. If they are not correct, check for spaces in input
filenames, missing segments in the file opened in the second part of dialogue #2, etc.

To print the data from Convert, simply use Viewdata (refer to the manual) and print it
out.

V. THE APPLICATION LASTONE

Lastone performs specific calculations on the (edited) timefile resulting from
Convert. Lastone corrects certain information which was made defunct by editing
converted timefile (see Convert manual), and creates some new data (such as
reading rate per word and total processing time per word, calculated over both
segments and passages). A detailed discussion and examples of these calculations
is contained in the OUTPUT section of this manual.

In addition to performing specific calculations, Lastone gives summary data, such as
total reading time per passage and the number of words per passage. (For other
applications, one "word" can be conceived of as a cluster of characters without space,
between them; in other words, a space signals a new word.) If other types of summary
data are desired, it should not be difficult to modify the Lastone program to meet
specific needs.

CONSTRAINTS

(1) The timefile upon which Lastone performs can only be the result of Readit and
Convert. Other program results without the same specific format are not useable.

(2) The timefile you wish to submit should have been EDITED to meet your plausibility
and subject error constraints (see Macwrite manual for the editing information).
Calculations based on the uncorrected timefiles will be fraught with abnormally high or
low numbers.

(3) There must be enough room on the disk where your output file lies to add another
small file; Lastone's output will join the ".time", ".time.new", and ".time.new-ed" files
in your subject's output file. See Table 3 for a sample of Lastone's output.

RUNNING LASTONE

Before running Lastone, you should have done the following: (1) Inserted the disk
with the Lastone application on it; (2) Inserted the disk with the subject's output folder
on it.

To start, double click on the Lastone icon. The first dialogue (Figure 21) is a two-part
dialogue requiring a two-part action. The program needs to know which folder (and
which file within it) you want to run the application on.

First, open the subject's output folder by clicking on, as before, "sub3.output".

Second, open the edited results of Convert by double clicking on the file with the
"has-been-edited" tag to it; in our example, it was called "sub3.time.new-ed" (see
Macwrite manual for more information).

Please open the output file you wish "lastone" to
operate on.

M subx.OUTPUT
D' testI.SEGS HD

Itestl.IMME

D test I.TRCE p [rive

* Open

4, Cancel

- Figure 21 --

The program now begins its calculations and the screen goes blank - this is identical
to what happens in Convert.

The final dialogue (Figure 22) informs you that Lastone was a success (if it wasn't,
see below). Then it asks you if you would like to apply Lastone to another unique
(edited) timefile. If so, type in "y" and hit return. If you are finished using Lastone,
simply type "n" and hit return. The next line of the dialogue simply means, "hit return
to get back to the desktop".

CONVERSION OF "testI.TIME.NEW" WAS A SUCCESS!
The new file is "testI.TIME.NEW.CONU".

WOULD YOU LIKE TO CONTINUE (q/n)? n

Normal proqram termination. Hit ENTER to return to shell:

- Figure 2 2--

If for some reason you receive an error message or a bomb, return to the edited
timefile. Did you save it as "text only"? Did you remember to give it a unique tag or
name? And if so, did you select the correct file for use in Lastone? Is the disk bad?
Did your data exceed one of the limits stated earlier? Was there enough space on the
disk to save your file? Are you somehow using an old version of Lastone (dated
before July, 1988)?

OUTPUT

The file resulting from running Lastone is saved into the output folder where the
results of Readit, Convert, and Macwrite editing are saved. It will bear the name of
the edited Macwrite file with an additional extension: ".conv". Thus, for example, if the
file I submitted to Lastone were entitled "Sub3.time.new-ed", then the new file would
be called "sub3.time.new-ed.conv". It should be obvious that the fewer keystrokes
used, the better; with the constant addition of extensions, names can become
unwieldy.

A real sample of the data created by Lastone and contained in the ".conv" file is
shown in Table 3.

The top section of the table provides a brief explanation of the table headings (a
further explanation follows Table 3).

The remainder of the printout contains actual data. For reasons of brevity, we show
here the data for the first passage (named "13,2") only; in fact, data for all the
passages read by the subject follows this initial information, in order read. In this
example, the output folder and the ".conv" file were named after the subject number;
therefore, as this is the data for subject 3, the output file is called "sub3.time.new-
ed.conv."

SPECIAL NOTE: The output from Lastone corrects for the errors in the edited version
of Convert's tWC and CUME columns because it counts the number of times a
segment was read based on what's actually in the file. Lastone avoids the small

34

editing errors in the cumulative columns by re-calculating the cumulative times based
on the actual reading times in the tS columns of those segments in the edited file.

THE FOLLOWING OUTPUT IS FOR SUBJECT "SUB3."
TIMES ARE IN VIEWING ORDER...

#V Number of Segment Views.
#W Number of Words in Segment.
TWR Total Words Read / Segment.
RT Total Reading Time / Segment.
RT/TWR Reading Time + Total Words Read / Seg.
RT/#W Reading Time + Number of Words in Seg.

SEGMENT #V #W TNR RT RT/TWR RT/#W
13,2.SEG.1 1 20 20 10.033 0.502 0.502
13,2.SEG.2 1 17 17 37.650 2.215 2.215
13,2.SEG.3 '2 17 34 35.950 1.057 2.115
13,2.SEG.4 3 10 30 24.166 0.806 2.417
13,2.SEG.5 2 15 30 25.450 0.848 1.697
13,2.SEG.6 3 19 57 21.316 0.374 1.122
13,2.SEG.7 3 22 66 79.650 1.207 3.620
13,2.SEG.8 3 21 63 38.883 0.617 1.852
13,2.SEG.9 3 19 57 37.917 0.665 1.996
13,2.SEG.10 3 7 21 13.217 0.629 1.888
13,2.SEG.1 1 3 15 45 79.233 1.761 5.282
13,2.SEG. 12 2 14 28 16.950 0.605 1.211
13,2.SEG.13 2 12 24 14.466 0.603 1.206
13,2.SEG.14 3 19 57 29.900 0.525 1.574
13,2.SEG. 15 2 16 32 22.217 0.694 1.389
13,2.SEG.16 2 11 22 13.467 0.612 1.224
13,2.SEG.17 2 26 52 25.717 0.495 0.989
13,2.SEG.18 2 20 40 83.384 2.085 4.169
13,2.SEG.19 1 13 13 10.850 0.835 0.835

Total Words In Passage = 313
Total Words Read = 708
Total Reading Time = 620.416
Total Reading Time +- Total Words Read = 0.876
Total Reading Time + Total Words In Passage = 1.982

-- Table 3 --

ABBREVIATIONS IN TABLE 3

#V - the total (cumulative) number of times a given segment was on the
screen during the subject's session with a specific passage.

#W - the number of letters present in a given segment (taken from the
data in the Converted timefile).

TWR - #V x #W, or the total (cumulative) number of words read for any
given segment.

RT - the total (cumulative) amount of time spent viewing a given
segment during the subject's session with a specific passage.

RT/TWR - the total reading time for a given segment divided by the total
number of words read for that segment.

RT/#W - the total reading time for a given segment divided by the
number of words in the segment.

DATA IN TABLE 3

If we now look at the data in table 3, we see the familiar columns with headers "SEG"
plus the six terms listed above, for a total of 7 items. The data to which these headers
apply covers information about segments and words within segments. The following
provides a summary of the items and their interpretation.

Items 1-3:

These items label and provide descriptive data for each segment - taken from the
Converted timefile. "Segs" labels the passage and segment number; "#V" tallies up
the number of times the segment was viewed; and "#W tells how many words are in
the given segment.

Items 4-5:

These items provide data per segment, aggregated up to that point in the subject's
reading process. "TWR" converts "#V" information into data about the total words read
in a given segment; "R'T converts "#V" information into data about the total reading
time spent on a given segment.

Items:

This item provides a "reading rate" measure, at the word level, for each segment. This
measure can be used to determine whether and when subjects actually slow down or
speed up their reading rate for the treatment segments or passages as against the
untreated ones.

Item 7:

This item provides a "processing time" measure, at the word level, for each segment.
This measure can be used to determine whether or not subjects actually spend more

time processing the words in a particular treatment segment or passage as against Ine
untreated ones.

SU'MARY INFORMATION FOLLOWING DATA IN TABLE 3

After the data for each passage comes a 5-line summary which provides nearly
identical information to that explained above, only summarized at the PASSAGE level.
The meaning of each measure is written out, and in any case mimics that above. It can
be used to detect any differences between passages, or to get a baseline readingrate/processing time per word for a given set of subjects.

Taken together, the data and summary data in table3 provide rate, processing, and
cumulative information at the word, segment, and passage level, and provide the type
of data useful for further statistical inquiry.

It is strongly recommended that the results of Lastone be checked for validity as well
as completeness. The completeness check can be done via Viewdata (see manual);
you might as well print out the results since you will probably need hard copies to work
from.

The first validity check should compare hand-done computations of the data to those
produced by the program. Later validity checks would be required any time you create
new passages, change the unit of measurement, or, naturally, if you modify any of the
several applications which feed into Lastone.0I

a!

0

VI. THE APPLICATION VIEWDATA

PURPOSE

Viewdata was created to allow quick and easy access to non-text documents
otherwise tiresome to open through word-processing programs. The non-text
documents may be viewed on the screen or printed.

CONSTRAINTS

(1) Viewdata can be used on text-only and regular text files. It cannot be used to
look at program code or applications.

(2) Viewdata can only be used to look at and print files. It cannotbe used to EDIT

any files.

RUNNING VIEWDATA

Before starting, you should have: (1) Inserted the disk on which the Viewdata
application is located; (2) Inserted the disk on which the file to be viewed resides; (3)
Have already done any editing or conversions of the file of interest.

To begin, double click on the Viewdata icon. Immediately a standard Macwrite-style
dialogue window appears, offering you a choice of files which may be opened on all"disks available. Simply open the file of interest. The screen will go blank, then the
frame will appear, and shortly, the testfile contents will appear on the screen. You may
either print the file or scroll through it.

To leave Viewdata, you must click "finished". If you want to look at a different file in
Viewdata, then simply click on "new". The first dialogue window will reappear, this
time showing the contents of the folder you were last using. To get out of the folder,
simply click the "drive" button and you will return to the familiar choice menu.

OUTPUT

There is no file output resulting from the use of Viewdata. Rather, Viewdata can be
used to check or to print out the data resulting from other applications.

• , , i i I I I I8

Distribution List

Dr. Susan E. Chipman
Office of Naval Reserve
Cognitive Science Program
800 North Quincy Street
Arlington, VA 22217-5000

Defense Technical Information Center
Attention: T.C.
Cameron Station, Bldg. 5
Alexandria, VA 22314 (12 copies)

Library
Naval Training Systems Center
Orlando, FL 32813

Library, NPRDC
Code P2O1L
San Diego, CA 92152-6800

Dr. Judith Orasanu
Army Research Institute
5001 Eisenhower AvenuefAlexandria, VA 22333

Dr. Lynne Reder
Department of Psychology
Carnegie-Mellon University
Schenley Park
Pittsburgh, PA 15213

0

